

# CCS Rule Change Notice For: RULES FOR GREEN SHIPS

Version: 2019 RCN No.1

Effective from 1 July, 2019

Beijing

#### APPENDIX 1 GUIDELINES FOR CALCULATION OF THE ATTAINED EEDI

# The EEDI Formula in section 2 is replaced with the following:

$$\frac{\left(\prod_{j=1}^{n}f_{j}\right)\left(\sum_{i=1}^{nME}P_{ME(i)}\cdot C_{FME(i)}\cdot SFC_{ME(i)}\right)+\left(P_{AE}\cdot C_{FAE}\cdot SFC_{AE}\right.^{*})+\left(\left(\prod_{j=1}^{n}f_{j}\cdot\sum_{i=1}^{nPTI}P_{PTI(i)}-\sum_{i=1}^{neff}f_{eff(i)}\cdot P_{AEeff(i)}\right)C_{FAE}\cdot SFC_{AE}\right)-\left(\sum_{i=1}^{neff}f_{eff(i)}\cdot P_{eff(i)}\cdot C_{FME}\cdot SFC_{ME}\right.^{*}+\left(\prod_{j=1}^{n}f_{j}\cdot\sum_{i=1}^{nPTI}P_{PTI(i)}-\sum_{i=1}^{neff}f_{eff(i)}\cdot P_{AEeff(i)}\right)C_{FAE}\cdot SFC_{AE}\right)-\left(\sum_{i=1}^{neff}f_{eff(i)}\cdot P_{eff(i)}\cdot C_{FME}\cdot SFC_{ME}\right)$$

# Paragraph 3 is substituted by the following:

# 3 Definition and selection of parameters in Attained EEDI calculation formula

# 3.1 Carbon conversion factor $(C_F)$

 $C_F$  is a non-dimensional conversion factor between fuel consumption and  $CO_2$  emission based on carbon content, measured int- $CO_2$ /t-Fuel. The subscripts Mei and AEi refer to the main and auxiliary engine(s) respectively.  $C_F$  corresponds to the fuel used when determining SFC listed in the applicable test report included in a Technical File as defined in  $NO_x$  Technical Code (hereinafter referred to as "test report included in a  $NO_x$  technical file"). The value of  $C_F$  is as follows:

# Carbon Conversion Factor $C_F$ Table 3.1

| Type of fuel             | Reference                       | Lower calorific<br>value (kJ/kg) | Carbon content | $C_F$ (t-CO <sub>2</sub> /t-Fuel) |
|--------------------------|---------------------------------|----------------------------------|----------------|-----------------------------------|
| 1. Diesel/gas oil        | ISO 8217 Grades DMX through DMC | 42,700                           | 0.8744         | 3.206                             |
| 2. Light fuel oil (LFO)  | ISO 8217 Grades RMA through RMD | 41,200                           | 0.8594         | 3.151                             |
| 3. Heavy fuel oil (HFO)  | ISO 8217 Grades RME through RMK | 40,200                           | 0.8493         | 3.114                             |
| 4. Liquefied petroleum   | Propane                         | <u>46,300</u>                    | 0.8182         | 3.000                             |
| gas (LPG)                | Butane                          | 45,700                           | 0.8264         | 3.030                             |
| 5. Liquefied natural gas |                                 |                                  | 0.7500         | 2.750                             |
| (LNG)                    |                                 | 48,000                           |                |                                   |
| 6. Methanol              |                                 | 19,900                           | 0.3750         | 1.375                             |
| 7. Ethanol               |                                 | 26,800                           | 0.5217         | 1.913                             |

In case of a ship equipped with a dual-fuel main or auxiliary engine, the  $C_F$ -factor for gas fuel and the  $C_F$ -factor for fuel oil are to apply and be multiplied with the specific fuel oil consumption of each fuel at the relevant EEDI load point. Meanwhile, gas fuel is to be identified whether it is regarded as the "primary

fuel" in accordance with the formula below:

$$\mathbf{f}_{\mathsf{DFgas}} = \frac{\sum\limits_{i=1}^{ntotal} P_{totalii}}{\sum\limits_{i=1}^{ngasfuel} P_{gasfuelii}} \times \frac{V_{gas} \times \rho_{gas} \times \mathit{LCV}_{gas} \times \mathit{K}_{gas}}{\left[\sum\limits_{i=1}^{nLiquid} V_{liquidii} \times \rho_{liquidii} \times \mathit{LCV}_{liquidii} \times \mathit{K}_{liquidii}\right] + V_{gas} \times \rho_{gas} \times \mathit{LCV}_{gas} \times \mathit{K}_{gas}}$$

f<sub>DFliquid</sub>=1-f<sub>DFgas</sub>

where:

 $f_{DFgas}$  is the fuel availability ratio of gas fuel corrected for the power ratio of gas engines to total engines,  $f_{DFgas}$  is not to be greater than 1;

 $V_{gas}$  is the total net gas fuel capacity on board in m<sup>3</sup>. If other arrangements, like exchangeable (specialized)

LNG tank-containers and/or arrangements allowing frequent gas refueling are used, the capacity of the whole LNG fuelling system is to be used for  $V_{gas}$ . The boil-off rate (BOR) of gas cargo tanks can be calculated and included to  $V_{gas}$  if it is connected to the fuel gas supply system (FGSS);

 $V_{liquid}$  is the total net liquid fuel capacity on board in m<sup>3</sup> of liquid fuel tanks permanently connected to the ship's fuel system. If one fuel tank is disconnected by permanent sealing valves,  $V_{liquid}$  of the fuel tank can be ignored;

 $\rho_{gas}$  is the density of gas fuel in kg/m<sup>3</sup>;

 $\rho_{liquid}$  is the density of each liquid fuel in kg/m<sup>3</sup>;

LCV<sub>gas</sub> is the low calorific value of gas fuel in kJ/kg;

LCV<sub>liquid</sub> is the low calorific value of liquid fuel in kJ/kg;

 $K_{gas}$  is the filling rate for gas fuel tanks;

<u>K<sub>liquid</sub></u> is the filling rate for liquid fuel tanks;

 $\underline{P_{total}}$  is the total installed engine power,  $\underline{P_{ME}}$  and  $\underline{P_{AE}}$  in kW;

 $\underline{P_{gasfuel}}$  is the dual fuel engine installed power,  $\underline{P_{ME}}$  and  $\underline{P_{AE}}$  in kW;

- .1 If the total gas capacity is at least 50% of the fuel capacity dedicated to the dual fuel engines, namely  $f_{DFgas} \ge 0.5$ , then gas fuel is regarded as the "primary fuel", and  $f_{DFgas} = 1$  and  $f_{DFliquid} = 0$  for each dual fuel engine.
- .2 If  $f_{DFgas}$ <0.5, gas fuel is not regarded as the "primary fuel". The  $C_F$  and SFC in the EEDI calculation for each dual fuel engine (both main and auxiliary engines) are to be calculated as the weighted average of  $C_F$  and SFC for liquid and gas mode, according to  $f_{DFgas}$  and  $f_{DFliquid}$ , such as the original item of  $P_{ME(i)}$   $C_{FME(i)}$   $SFC_{ME(i)}$  in the EEDI calculation is to be replaced by the formula

below:

$$\begin{array}{l} P_{\text{ME}(i)} \cdot [f_{\text{DFgas}(i)} \cdot (C_{\text{FME pilot fuel}(i)} \cdot SFC_{\text{ME pilot fuel}(i)} + C_{\text{FME gas}(i)} \cdot SFC_{\text{ME gas}(i)}) \\ + f_{\text{DFliquid}(i)} \cdot C_{\text{FME liquid}(i)} \cdot SFC_{\text{ME liquid}(i)} \end{array}]$$

#### Paragraph 3.5.4(4) is substituted by the following:

(4)For ship where the  $P_{AE}$  value calculated by (1), (2) or (3) above is significantly different from the total power used at the speed  $V_{ref}$ , e.g., in cases of Passenger ships, Ro-Ro Passenger Ships and Cruise Passenger Ships, the  $P_{AE}$  value is to be estimated by the consumed electric power (excluding propulsion) in conditions when the ship is engaged in a voyage at the reference speed ( $V_{ref}$ ) as given in the electric power table, divided by the average efficiency of the generator(s) weighted by power. As an option for other vessel types, if the difference between  $P_{AE}$  value calculated by (1), (2) or (3) above and  $P_{AE}$  based on electric power table, leads to a variation of the computed EEDI value exceeding 1%, the value for auxiliary power could be taken from the electric power table.

The electric power table for EEDI calculation is to be examined and validated by CCS. Where ambient conditions affect any electrical load in the power table, the contractual ambient conditions leading to the maximum design electrical load of the installed system for the ship in general are to apply. See appendix 2 for the development of electric power tables.

# A new paragraph of 3.7.11 is added as follows:

3.7.11Reference lower calorific values of additional fuels are given in the Table 3.1 of these Guidelines. The reference lower calorific value corresponding to the conversion factor of the respective fuel is to be used for calculation.

Table 3.8.1 is substituted by the following:

# Correction factor for power $f_j$ for ice-classed ships

**Table 3.8.1** 

| Ship type               | $f_{j0}$                                                         | $f_{j,min}$ depending on the ice class |                                       |                                       |                                       |  |
|-------------------------|------------------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|
|                         | , ,                                                              | IA Super                               | IA                                    | IB                                    | IC                                    |  |
| Tanker                  | $\frac{17.444 \cdot DWT^{0.5766}}{\sum_{i=1}^{nME} MCR_{ME(i)}}$ | 0.2488 · <i>DWT</i> <sup>0.0903</sup>  | 0.4541 · <i>DWT</i> <sup>0.0524</sup> | 0.7783 · DWT <sup>0.0145</sup>        | 0.8741 · DWT <sup>0.0079</sup>        |  |
| Bulk carrier            | $\frac{17.207 \cdot DWT^{0.5705}}{\sum_{i=1}^{nME} MCR_{ME(i)}}$ | 0.2515 · DWT <sup>0.0851</sup>         | 0.3918 · <i>DWT</i> <sup>0.0556</sup> | $0.8075 \cdot DWT^{0.0071}$           | 0.8573 · DWT <sup>0.0087</sup>        |  |
| General cargo<br>ship   | $\frac{1.974 \cdot DWT^{0.7987}}{\sum_{i=1}^{nME} MCR_{ME(i)}}$  | 0.1381 · DWT <sup>0.1435</sup>         | 0.1574 · DWT <sup>0.144</sup>         | 0.3256 · DWT <sup>0.0922</sup>        | 0.4966 · <i>DWT</i> <sup>0.0583</sup> |  |
| Refrigerated cargo ship | $\frac{5.598 \cdot DWT^{0.696}}{\sum_{i=1}^{nME} MCR_{ME(i)}}$   | $0.5254 \cdot DWT^{0.0357}$            | $0.6325 \cdot DWT^{0.0278}$           | 0.7670 · <i>DWT</i> <sup>0.0159</sup> | 0.8918 · DWT <sup>0.0079</sup>        |  |

#### A new paragraph after 3.8.1 is added as follows:

Alternatively, if an ice-class ship is designed and constructed based on an open water ship with same

shape and size of hull with EEDI certification, the power correction factor,  $f_i$ , for ice-classed ships can be calculated by using propulsion power of the new ice-class ship required by ice-class regulations,  $P_{ice\ class}$ , and the existing open water ship,  $P_{ow}$ , as follows:

In this case, *V*<sub>ref</sub> should be measured at the shaft power of the engine(s) installed on the existing open water ship as defined in paragraph 3.5.

# Paragraph 3.9.1 is substituted by the following:

For ice-classed ships, the capacity is decreased due to the increased ship weight resulting from the increased steel plate thickness for guaranteeing their ice breaking capability. Therefore this capacity correction factor is applied to compensate for the loss of capacity. The capacity correction factor, fi, for ice-classed ships having DWT as the measure of capacity should be calculated as follows:

$$f_i = f_{i(iceclass)} f_{iC_h}$$

where  $f_{i(ice\ class)}$  is the capacity correction factor for ice-strengthening of the ship, which can be obtained from Table 3.9.1 (1) and  $f_{iCb}$  is the capacity correction factor for improved ice-going capability, which should not be less than 1.0 and which should be calculated as follows:

$$f_{iC_b} = \frac{C_{breferencedesign}}{C_b} ,$$

# Capacity correction factor for ice-strengthening of the hull Table 3.9.1 (1)

| Ice | $f_{i(ice\ class)}$               |
|-----|-----------------------------------|
| IC  | $f_{i(IC)} = 1.0041 + 58.5/DWT$   |
| IB  | $f_{i(IB)} = 1.0067 + 62.7/DWT$   |
| IA  | $f_{i(IA)} = 1.0099 + 95.1/DWT$   |
| IA  | $f_{i(IAS)} = 1.0151 + 228.7/DWT$ |

where *Cb reference design* is the average block coefficient for the ship type, which can be obtained from Table 3.9.1 (2) for bulk carriers, tankers and general cargo ships, and *Cb* is the block coefficient of the ship. For ship types other than bulk carriers, tankers and general cargo ships,

$$f_{iC_b} = 1.0$$

# Average block coefficients Cb reference design for bulk carriers, tankers and general cargo ships Table 3.9.1 (2)

|                       |                     | Size categories        |                        |                        |                     |
|-----------------------|---------------------|------------------------|------------------------|------------------------|---------------------|
| Ship type             | below<br>10,000 DWT | 10,000 –<br>25,000 DWT | 25,000 – 55,000<br>DWT | 55,000 – 75,000<br>DWT | above<br>75,000 DWT |
| Bulk carrier          | 0.78                | 0.80                   | 0.82                   | 0.86                   | 0.86                |
| Tanker                | 0.78                | 0.78                   | 0.80                   | 0.83                   | 0.83                |
| General cargo<br>ship |                     |                        | 0.80                   |                        |                     |

Alternatively, the capacity correction factor for ice-strengthening of the ship ( $fi(ice\ class)$ ) can be calculated by using the formula given for the ship specific voluntary enhancement correction coefficient (fiVSE) in paragraph 3.9.2. This formula can also be used for other ice classes than those given in Table 3.9.1 (1).

# A new paragraph 3.10.4 is added as follows:

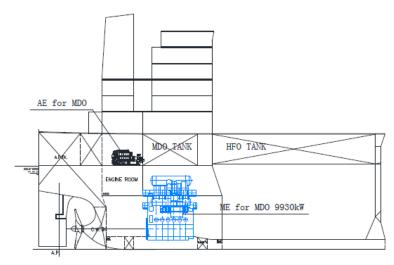
3.10.4 For bulk carriers having R of less than 0.55 (e.g. wood chip carriers), the following cubic capacity correction factor,  $f_{c \ bulk \ carriers \ designed \ to \ carry \ light \ cargoes}$ , is to apply:

 $f_{cbulk\ carriers\ designed\ to\ carry\ light\ cargoes}\!\!=\!\!R^{-0.15}$ 

where: R— the capacity ratio of the deadweight of the ship (tonnes) as determined by paragraph 3.4 divided by the total cubic capacity of the cargo holds of the ship ( $m^3$ ).

A new section 3.19 is added after the existing section 3.18 as follows:

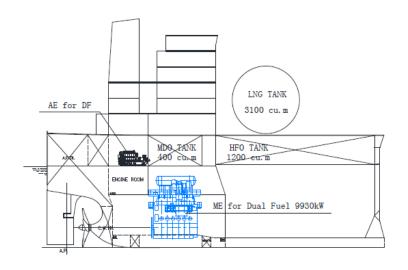
# 3.19 Factor for ice-classed ships having IA Super and IA, fm


For ice-classed ships having IA Super or IA, the following factor,  $f_m$ , should apply:

 $f_m = 1.05$ 

# The existing Appendix 1-1 is substituted by the following:

# **Appendix 1-1 EEDI Calculation Examples for Use of Dual Fuel Engines**

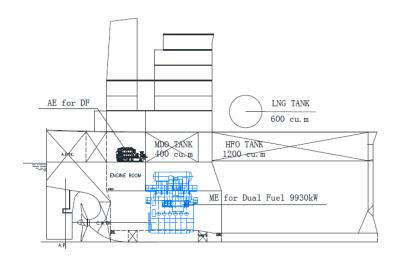

Case 1: Standard Kamsarmax ship, one main engine (MDO), standard auxiliary engines (MDO), no shaft generator:



| <u>S/N</u> | <u>Parameter</u>                        | Formula or source                                                                                                                                             | <u>Unit</u>           | <u>Value</u>  |
|------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
| 1          | MCR <sub>ME</sub>                       | MCRrating of main engine                                                                                                                                      | <u>kW</u>             | <u>9930</u>   |
| <u>2</u>   | Capacity                                | Deadweight of the ship at summer load draft                                                                                                                   | <u>DWT</u>            | 81200         |
| <u>3</u>   | $\underline{\mathbf{V}}_{\mathrm{ref}}$ | Ships speed as defined in EEDI regulation                                                                                                                     | <u>kn</u>             | <u>14</u>     |
| <u>4</u>   | P <sub>ME</sub>                         | 0.75 ×MCR <sub>ME</sub>                                                                                                                                       | <u>kW</u>             | <u>7447.5</u> |
| <u>5</u>   | P <sub>AE</sub>                         | $0.05 \times MCR_{ME}$                                                                                                                                        | <u>kW</u>             | <u>496.5</u>  |
| <u>6</u>   | <u>C<sub>FME</sub></u>                  | C <sub>F</sub> factor of main engine using MDO                                                                                                                | =                     | 3.206         |
| 7          | <u>C<sub>FAE</sub></u>                  | C <sub>F</sub> factor of auxiliary engine using MDO                                                                                                           | =                     | 3.206         |
| <u>8</u>   | <u>SFC<sub>ME</sub></u>                 | Specific fuel consumption of ME at P <sub>ME</sub>                                                                                                            | g/kWh                 | <u>165</u>    |
| 9          | <u>SFC</u> <sub>AE</sub>                | Specific fuel consumption of AE at P <sub>AE</sub>                                                                                                            | g/kWh                 | 210           |
| <u>10</u>  | <u>EEDI</u>                             | $ \frac{[(P_{ME} \times C_{FME} \times SFC_{ME}) + (P_{AE} \times C_{FAE} \times SFC_{AE})] / (v_{ref} \times Capacity) }{\times (V_{FAE} \times SFC_{AE})} $ | gCO <sub>2</sub> /tnm | <u>3.76</u>   |

Case 2: LNG is regarded as the "primary fuel" if dual-fuel main engine and dual-fuel auxiliary engine

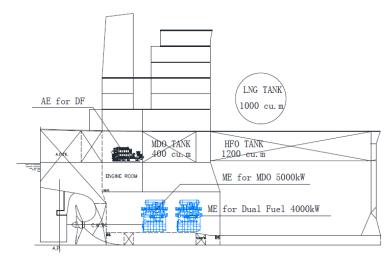
(LNG, pilot fuel MDO; no shaft generator) are equipped with bigger LNG tanks.




| <u>S/N</u> | Parameter                               | Formula or source                                                           | <u>Unit</u>           | <u>Value</u>  |
|------------|-----------------------------------------|-----------------------------------------------------------------------------|-----------------------|---------------|
| 1          | MCR <sub>ME</sub>                       | MCR rating of main engine                                                   | <u>kW</u>             | 9930          |
| <u>2</u>   | Capacity                                | Deadweight of the ship at summer load draft                                 | <u>DWT</u>            | 81200         |
| <u>3</u>   | <u>V<sub>ref</sub></u>                  | Ships speed as defined in EEDI regulation                                   | <u>kn</u>             | 14            |
| <u>4</u>   | P <sub>ME</sub>                         | $0.75 \times MCR_{ME}$                                                      | <u>kW</u>             | <u>7447.5</u> |
| <u>5</u>   | <u>P</u> <sub>AE</sub>                  | $0.05 \times MCR_{ME}$                                                      | <u>kW</u>             | <u>496.5</u>  |
| <u>6</u>   | <u>C</u> <sub>FPilotfuel</sub>          | C <sub>F</sub> factor of pilot fuel for dual fuel ME using MDO              | =                     | 3.206         |
| <u>7</u>   | CFAEPilotfuel                           | C <sub>F</sub> factor of pilot fuel for auxiliary engine using MDO          | =                     | 3.206         |
| <u>8</u>   | <u>C<sub>FLNG</sub></u>                 | C <sub>F</sub> factor of dual fuel engine using LNG                         | =                     | <u>2.75</u>   |
| 9          | <u>SFC</u> <sub>MEPilotfuel</sub>       | Specific fuel consumption of pilot fuel for dual fuel ME at $P_{ME}$        | g/kWh                 | <u>6</u>      |
| <u>10</u>  | <u>SFC</u> <sub>AEPilotfuel</sub>       | Specific fuel consumption of pilot fuel for dual fuel AE at P <sub>AE</sub> | g/kWh                 | <u>7</u>      |
| <u>11</u>  | <u>SFC<sub>ME LNG</sub></u>             | Specific fuel consumption of ME using LNG at P <sub>ME</sub>                | g/kWh                 | <u>136</u>    |
| <u>12</u>  | <u>SFC<sub>AE LNG</sub></u>             | Specific fuel consumption of AE using LNG at P <sub>AE</sub>                | g/kWh                 | <u>160</u>    |
| <u>13</u>  | $\underline{\mathbf{V}_{\mathrm{LNG}}}$ | LNG tank capacity on board                                                  | <u>m</u> <sup>3</sup> | 3100          |
| <u>14</u>  | $\underline{V}_{	ext{HFO}}$             | Heavy fuel oil tank capacity on board                                       | <u>m</u> <sup>3</sup> | <u>1200</u>   |
| <u>15</u>  | <u>V<sub>MDO</sub></u>                  | Marine diesel oil tank capacity on board                                    | <u>m</u> <sup>3</sup> | 400           |
| <u>16</u>  | <u>PLNG</u>                             | Density of LNG                                                              | kg/m <sup>3</sup>     | 450           |
| <u>17</u>  | <u> PHFO</u>                            | Density of heavy fuel oil                                                   | kg/m <sup>3</sup>     | <u>991</u>    |
| <u>18</u>  | <u>P<sub>MDO</sub></u>                  | Density of marine diesel oil                                                | kg/m <sup>3</sup>     | 900           |

| <u>19</u> | <u>LCV<sub>LNG</sub></u>  | Low calorific value of LNG                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kJ/kg                 | 48000  |
|-----------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|
| <u>20</u> | <u>LCV<sub>HFO</sub></u>  | Low calorific value of heavy fuel oil                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kJ/kg                 | 40200  |
| <u>21</u> | <u>LCV<sub>MDO</sub></u>  | Low calorific value of marine diesel oil                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>kJ/kg</u>          | 42700  |
| <u>22</u> | <u>K</u> <sub>LNG</sub>   | Filling rate of LNG tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =                     | 0.95   |
| <u>23</u> | <u>K</u> <sub>HFO</sub>   | Filling rate of heavy fuel tank                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                     | 0.98   |
| <u>24</u> | <u>K</u> <sub>MDO</sub>   | Filling rate of marine diesel tank                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                     | 0.98   |
| <u>25</u> | <u>f</u> <sub>DFgas</sub> | $\frac{P_{\mathit{NE}} + P_{\mathit{AE}}}{P_{\mathit{NE}} + P_{\mathit{AE}}} \times \frac{V_{\mathit{LNG}} \times \rho_{\mathit{LNG}} \times LCV_{\mathit{LNG}} \times K_{\mathit{LNG}}}{V_{\mathit{EFO}} \times \rho_{\mathit{EFO}} \times LCV_{\mathit{EFO}} \times K_{\mathit{EFO}} + V_{\mathit{NDO}} \times \rho_{\mathit{NDO}} \times LCV_{\mathit{NDO}} \times K_{\mathit{NDO}} + V_{\mathit{LNG}} \times \rho_{\mathit{LNG}} \times LCV_{\mathit{LNG}} \times K_{\mathit{LNG}}}$ | =                     | 0.5068 |
| <u>26</u> | EEDI                      | [PME X (CF Pilotfuel X SFCME Pilotfuel + CF LNG X SFCME LNG) + PAE X (CF Pilotfuel X SFCAE Pilotfuel + CF LNG X SFCAE LNG)] / (Vref X Capacity)                                                                                                                                                                                                                                                                                                                                          | gCO <sub>2</sub> /tnm | 2.78   |

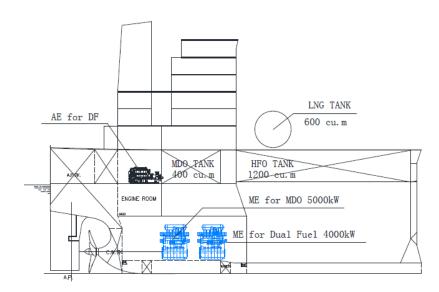
Case 3: LNG is not regarded as the "primary fuel" if dual-fuel main engine and dual-fuel auxiliary engine


(LNG, pilot fuel MDO; no shaft generator) are equipped with smaller LNG tanks:



| <u>S/N</u> | Parameter             | Formula or source                                                  | <u>Unit</u> | <u>Value</u>  |
|------------|-----------------------|--------------------------------------------------------------------|-------------|---------------|
| 1          | MCR <sub>ME</sub>     | MCR rating of main engine                                          | <u>kW</u>   | 9930          |
| 2          | Capacity              | Deadweight of the ship at summer load draft                        | <u>DWT</u>  | 81200         |
| <u>3</u>   | $\underline{V}_{ref}$ | Ships speed as defined in EEDI regulation                          | <u>kn</u>   | 14            |
| <u>4</u>   | P <sub>ME</sub>       | $0.75 \times MCR_{ME}$                                             | <u>kW</u>   | <u>7447.5</u> |
| <u>5</u>   | P <sub>AE</sub>       | $0.05 \times MCR_{ME}$                                             | <u>kW</u>   | <u>496.5</u>  |
| <u>6</u>   | <u>C</u> FPilotfuel   | C <sub>E</sub> factor of pilot fuel for dual fuel ME using MDO     | =           | 3.206         |
| <u>7</u>   | <u>C</u> FAEPilotfuel | C <sub>F</sub> factor of pilot fuel for auxiliary engine using MDO | =           | 3.206         |

|           | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |
|-----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|
| 8         | <u>C<sub>FLNG</sub></u>          | C <sub>F</sub> factor of dual fuel engine using LNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                          | <u>2.75</u>  |
| 9         | <u>C<sub>FMDO</sub></u>          | C <sub>E</sub> factor of dual fuel ME/AE engine using MDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =                          | 3.206        |
| <u>10</u> | <u>SFC<sub>MEPilotfuel</sub></u> | Specific fuel consumption of pilot fuel for dual fuel Meat P <sub>ME</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/kWh                      | <u>6</u>     |
| <u>11</u> | SFC <sub>AEPilotfuel</sub>       | Specific fuel consumption of pilot fuel for dual fuel AE at P <sub>AE</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/kWh                      | 7            |
| <u>12</u> | SFC <sub>ME LNG</sub>            | Specific fuel consumption of ME using LNG at P <sub>ME</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g/kWh                      | <u>136</u>   |
| <u>13</u> | SFC <sub>AE LNG</sub>            | Specific fuel consumption of AE using LNG at P <sub>AE</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g/kWh                      | <u>160</u>   |
| <u>14</u> | SFC <sub>ME MDO</sub>            | Specific fuel consumption of dual fuel ME using MDO at P <sub>ME</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g/kWh                      | <u>165</u>   |
| <u>15</u> | SFC <sub>AEMDO</sub>             | Specific fuel consumption of dual fuel AE using MDO at PAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/kWh                      | <u>187</u>   |
| <u>16</u> | <u>V</u> <sub>LNG</sub>          | LNG tank capacity on board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>m</u> <sup>3</sup>      | 600          |
| <u>17</u> | V <sub>HFO</sub>                 | Heavy fuel oil tank capacity on board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\underline{\mathbf{m}^3}$ | 1800         |
| <u>18</u> | <u>V<sub>MDO</sub></u>           | Marine diesel oil tank capacity on board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m <sup>3</sup>             | 400          |
| <u>19</u> | <u> P<sub>LNG</sub></u>          | Density of LNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kg/m <sup>3</sup>          | <u>450</u>   |
| <u>20</u> | <u> Днғо</u>                     | Density of heavy fuel oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kg/m <sup>3</sup>          | <u>991</u>   |
| <u>21</u> | <u> </u>                         | Density of marine diesel oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kg/m <sup>3</sup>          | 900          |
| <u>22</u> | <u>LCV<sub>LNG</sub></u>         | Low calorific value of LNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kJ/kg                      | 48000        |
| <u>23</u> | <u>LCV<sub>HFO</sub></u>         | Low calorific value of heavy fuel oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>kJ/kg</u>               | 40200        |
| <u>24</u> | <u>LCV<sub>MDO</sub></u>         | Low calorific value of marine diesel oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>kJ/kg</u>               | <u>42700</u> |
| <u>25</u> | <u>K</u> <sub>LNG</sub>          | Filling rate of LNG tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =                          | 0.95         |
| <u>26</u> | K <sub>HFO</sub>                 | Filling rate of heavy fuel tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =                          | 0.98         |
| <u>27</u> | <u>K</u> <sub>MDO</sub>          | Filling rate of marine diesel tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                          | 0.98         |
| <u>28</u> | f <sub>DFgas</sub>               | $\frac{P_{\mathit{ME}} + P_{\mathit{AE}}}{P_{\mathit{ME}} + P_{\mathit{AE}}} \times \frac{V_{\mathit{LNG}} \times \rho_{\mathit{LNG}} \times \mathit{LCV}_{\mathit{LNG}} \times \mathit{K}_{\mathit{LNG}}}{V_{\mathit{LFO}} \times \rho_{\mathit{HFO}} \times \mathit{LCV}_{\mathit{HFO}} \times \mathit{K}_{\mathit{HFO}} + V_{\mathit{MDO}} \times \rho_{\mathit{MDO}} \times \mathit{LCV}_{\mathit{MDO}} \times \mathit{K}_{\mathit{MDO}} + V_{\mathit{LNG}} \times \rho_{\mathit{LNG}} \times \mathit{LCV}_{\mathit{LNG}} \times \mathit{K}_{\mathit{LNG}}}$ | =                          | 0.1261       |
| <u>29</u> | f <sub>DFliquid</sub>            | 1-f <sub>DFgas</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ξ                          | 0.8739       |
| <u>30</u> | <u>EEDI</u>                      | [PME X [fdfgas X (CF Pilotfuel X SFCME Pilotfuel + CF LNG X SFCME LNG) + fdfliquid XCFMDO X SFCME MDO] + PAE X[fdfgas X (CFAE Pilotfuel X SFCAE Pilotfuel + CF LNG X SFCAE LNG)+fdfliquid XCFMDO X SFCAE MDO]] / (Vref X Capacity)                                                                                                                                                                                                                                                                                                                               | gCO <sub>2</sub> /tnm      | 3.61         |


Case 4: One dual-fuel main engine (LNG, pilot fuel MDO) and one main engine (MDO) and dual-fuel auxiliary engine (LNG, pilot fuel MDO, no shaft generator) which LNG could be regarded as "primary fuel" only for the dual-fuel main engine:



| <u>S/N</u> | <u>Parameter</u>                        | Formula or source                                                           | <u>Unit</u>           | <u>Value</u> |
|------------|-----------------------------------------|-----------------------------------------------------------------------------|-----------------------|--------------|
| 1          | MCR <sub>MEMDO</sub>                    | MCR rating of main engine using only MDO                                    | <u>kW</u>             | <u>5000</u>  |
| <u>2</u>   | MCR <sub>MELNG</sub>                    | MCR rating of main engine using dual fuel                                   | <u>kW</u>             | 4000         |
| <u>3</u>   | Capacity                                | Deadweight of the ship at summer load draft                                 | <u>DWT</u>            | 81200        |
| <u>4</u>   | $\underline{\mathbf{V}}_{\mathrm{ref}}$ | Ships speed as defined in EEDI regulation                                   | <u>kn</u>             | <u>14</u>    |
| <u>5</u>   | P <sub>MEMDO</sub>                      | 0.75×MCR <sub>MEMDO</sub>                                                   | <u>kW</u>             | <u>3750</u>  |
| <u>6</u>   | P <sub>AELNG</sub>                      | 0.75×MCR <sub>MELNG</sub>                                                   | <u>kW</u>             | 3000         |
| 7          | P <sub>AE</sub>                         | $0.05 \times (MCR_{MEMDO} + MCR_{MELNG})$                                   | <u>kW</u>             | <u>450</u>   |
| 8          | CFPilotfuel                             | C <sub>F</sub> factor of pilot fuel for dual fuel ME using MDO              | =                     | 3.206        |
| 9          | CFAEPilotfuel                           | C <sub>F</sub> factor of pilot fuel for auxiliary engine using MDO          | =                     | 3.206        |
| <u>10</u>  | <u>C<sub>FLNG</sub></u>                 | C <sub>F</sub> factor of dual fuel engine using LNG                         | =                     | <u>2.75</u>  |
| <u>11</u>  | <u>C<sub>FMDO</sub></u>                 | C <sub>F</sub> factor of dual fuel ME/AE engine using MDO                   | =                     | 3.206        |
| <u>12</u>  | <u>SFC</u> <sub>MEPilotfuel</sub>       | Specific fuel consumption of pilot fuel for dual fuel ME at P <sub>ME</sub> | g/kWh                 | <u>6</u>     |
| <u>13</u>  | <u>SFC</u> <sub>AEPilotfuel</sub>       | Specific fuel consumption of pilot fuel for dual fuel AE at P <sub>AE</sub> | g/kWh                 | 7            |
| <u>14</u>  | <u>SFC<sub>DF LNG</sub></u>             | Specific fuel consumption of dual fuel ME using LNG at $P_{ME}$             | g/kWh                 | <u>158</u>   |
| <u>15</u>  | <u>SFC</u> <sub>AE LNG</sub>            | Specific fuel consumption of AE using LNG at P <sub>AE</sub>                | g/kWh                 | <u>160</u>   |
| <u>16</u>  | <u>SFC<sub>ME MDO</sub></u>             | Specific fuel consumption of single fuel ME at $P_{ME}$                     | g/kWh                 | <u>180</u>   |
| <u>17</u>  | <u>V</u> <sub>LNG</sub>                 | LNG tank capacity on board                                                  | <u>m³</u>             | 1000         |
| <u>18</u>  | <u>V<sub>HFO</sub></u>                  | Heavy fuel oil tank capacity on board                                       | <u>m</u> <sup>3</sup> | 1200         |
| <u>19</u>  | <u>V<sub>MDO</sub></u>                  | Marine diesel oil tank capacity on board                                    | <u>m</u> <sup>3</sup> | <u>400</u>   |

| <u>20</u> | $\underline{ ho_{LNG}}$   | Density of LNG                                                                                                                                                                                                                                                                                                                                                                      | kg/m <sup>3</sup>     | <u>450</u> |
|-----------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| <u>21</u> | <u> Днғо</u>              | Density of heavy fuel oil                                                                                                                                                                                                                                                                                                                                                           | kg/m <sup>3</sup>     | <u>991</u> |
| <u>22</u> | <u> P</u> MDO             | Density of marine diesel oil                                                                                                                                                                                                                                                                                                                                                        | kg/m <sup>3</sup>     | 900        |
| <u>23</u> | <u>LCV<sub>LNG</sub></u>  | Low calorific value of LNG                                                                                                                                                                                                                                                                                                                                                          | kJ/kg                 | 48000      |
| <u>24</u> | <u>LCV<sub>HFO</sub></u>  | Low calorific value of heavy fuel oil                                                                                                                                                                                                                                                                                                                                               | kJ/kg                 | 40200      |
| <u>25</u> | <u>LCV<sub>MDO</sub></u>  | Low calorific value of marine diesel oil                                                                                                                                                                                                                                                                                                                                            | kJ/kg                 | 42700      |
| <u>26</u> | <u>K</u> <sub>LNG</sub>   | Filling rate of LNG tank                                                                                                                                                                                                                                                                                                                                                            | =                     | 0.95       |
| <u>27</u> | <u>K</u> <sub>HFO</sub>   | Filling rate of heavy fuel tank                                                                                                                                                                                                                                                                                                                                                     | =                     | 0.98       |
| <u>28</u> | <u>K</u> <sub>MDO</sub>   | Filling rate of marine diesel tank                                                                                                                                                                                                                                                                                                                                                  | =                     | 0.98       |
| <u>29</u> | <u>f</u> <sub>DFgas</sub> | $\frac{P_{\text{MEDIO}} + P_{\text{MELING}} + P_{\text{AE}}}{P_{\text{MELING}} + P_{\text{AE}}} \times \frac{V_{\text{LNG}} \times \rho_{\text{LNG}} \times LCV_{\text{LNG}} \times K_{\text{LNG}}}{V_{\text{EFO}} \times \rho_{\text{EFO}} \times LCV_{\text{EFO}} \times K_{\text{EFO}} + V_{\text{LNO}} \times \rho_{\text{ENO}} \times LCV_{\text{LNG}} \times K_{\text{LNG}}}$ | =                     | 0.5195     |
| <u>30</u> | <u>EEDI</u>               | [PMELNG X (CF Pilotfuel X SFCME Pilotfuel + CFLNG X SFCDFLNG) + PMEMDO X CFMDO X SFCME MDO + PAE X (CFAE Pilotfuel X SFCAE Pilotfuel + CFLNG X SFCAE LNG)] / (Vref X Capacity)                                                                                                                                                                                                      | gCO <sub>2</sub> /tnm | 3.28       |

Case 5: One dual-fuel main engine (LNG, pilot fuel MDO), and one main engine (MDO) and dual-fuel auxiliary engine (LNG, pilot fuel MDO, no shaft generator) which LNG could not be regarded as "primary fuel" for the dual-fuel main engine:



| <u>S/N</u> | <u>Parameter</u>     | Formula or source                        | <u>Unit</u> | <u>Value</u> |
|------------|----------------------|------------------------------------------|-------------|--------------|
| 1          | MCR <sub>MEMDO</sub> | MCR rating of main engine using only MDO | <u>kW</u>   | <u>5000</u>  |

| <u>2</u>  | MCR <sub>MELNG</sub>              | MCR rating of main engine using dual fuel                                   | <u>kW</u>             | <u>4000</u>  |
|-----------|-----------------------------------|-----------------------------------------------------------------------------|-----------------------|--------------|
| <u>3</u>  | Capacity                          | Deadweight of the ship at summer load draft                                 | DWT                   | 81200        |
| <u>4</u>  | <u>V<sub>ref</sub></u>            | Ships speed as defined in EEDI regulation                                   | <u>kn</u>             | <u>14</u>    |
| <u>5</u>  | P <sub>MEMDO</sub>                | 0.75×MCR <sub>MEMDO</sub>                                                   | <u>kW</u>             | <u>3750</u>  |
| <u>6</u>  | P <sub>AELNG</sub>                | 0.75×MCR <sub>MELNG</sub>                                                   | <u>kW</u>             | <u>3000</u>  |
| 7         | P <sub>AE</sub>                   | 0.05× (MCR <sub>MEMDO</sub> + MCR <sub>MELNG</sub> )                        | <u>kW</u>             | <u>450</u>   |
| <u>8</u>  | <u>C</u> FPilotfuel               | C <sub>E</sub> factor of pilot fuel for dual fuel ME using MDO              | =                     | 3.206        |
| 9         | CFAEPilotfuel                     | C <sub>F</sub> factor of pilot fuel for auxiliary engine using MDO          | =                     | 3.206        |
| <u>10</u> | <u>C<sub>FLNG</sub></u>           | C <sub>E</sub> factor of dual fuel engine using LNG                         | =                     | <u>2.75</u>  |
| <u>11</u> | <u>C<sub>FMDO</sub></u>           | C <sub>E</sub> factor of dual fuel ME/AE engine using MDO                   | =                     | <u>2.75</u>  |
| <u>12</u> | <u>SFC</u> <sub>MEPilotfuel</sub> | Specific fuel consumption of pilot fuel for dual fuel ME at P <sub>ME</sub> | g/kWh                 | <u>6</u>     |
| <u>13</u> | <u>SFC</u> <sub>AEPilotfuel</sub> | Specific fuel consumption of pilot fuel for dual fuel AE at P <sub>AE</sub> | g/kWh                 | 7            |
| <u>14</u> | SFC <sub>DF LNG</sub>             | Specific fuel consumption of dual fuel ME using LNG at P <sub>ME</sub>      | g/kWh                 | <u>158</u>   |
| <u>15</u> | <u>SFC<sub>AE LNG</sub></u>       | Specific fuel consumption of AE using LNG at PAE                            | g/kWh                 | <u>160</u>   |
| <u>16</u> | <u>SFC<sub>DF MDO</sub></u>       | Specific fuel consumption of dual fuel ME using MDO at P <sub>ME</sub>      | g/kWh                 | <u>185</u>   |
| <u>17</u> | SFC <sub>ME MDO</sub>             | Specific fuel consumption of single fuel ME at P <sub>ME</sub>              | g/kWh                 | <u>180</u>   |
| <u>18</u> | <u>SFC</u> <sub>AE MDO</sub>      | Specific fuel consumption of AE using MDO at P <sub>AE</sub>                | g/kWh                 | <u>187</u>   |
| <u>19</u> | <u>V</u> <sub>LNG</sub>           | LNG tank capacity on board                                                  | <u>m</u> <sup>3</sup> | <u>600</u>   |
| <u>20</u> | <u>V<sub>HFO</sub></u>            | Heavy fuel oil tank capacity on board                                       | <u>m</u> <sup>3</sup> | 1200         |
| <u>21</u> | <u>V<sub>MDO</sub></u>            | Marine diesel oil tank capacity on board                                    | <u>m</u> <sup>3</sup> | <u>400</u>   |
| <u>22</u> | <u>P<sub>LNG</sub></u>            | Density of LNG                                                              | kg/m <sup>3</sup>     | <u>450</u>   |
| <u>23</u> | <u> Рнго</u>                      | Density of heavy fuel oil                                                   | kg/m <sup>3</sup>     | <u>991</u>   |
| <u>24</u> | <u>P<sub>MDO</sub></u>            | Density of marine diesel oil                                                | kg/m <sup>3</sup>     | 900          |
| <u>25</u> | <u>LCV<sub>LNG</sub></u>          | Low calorific value of LNG                                                  | kJ/kg                 | <u>48000</u> |
| <u>26</u> | <u>LCV<sub>HFO</sub></u>          | Low calorific value of heavy fuel oil                                       | kJ/kg                 | 40200        |
| <u>27</u> | <u>LCV<sub>MDO</sub></u>          | Low calorific value of marine diesel oil                                    | kJ/kg                 | 42700        |
| <u>28</u> | <u>K</u> <sub>LNG</sub>           | Filling rate of LNG tank                                                    | =                     | 0.95         |
| <u>29</u> | <u>K</u> <sub>HFO</sub>           | Filling rate of heavy fuel oil                                              | =                     | 0.98         |
| <u>30</u> | <u>K</u> <sub>MDO</sub>           | Filling rate of marine diesel tank                                          | =                     | 0.98         |

| <u>31</u> | $\underline{\mathbf{f}_{\mathrm{DFgas}}}$ | $\frac{P_{\textit{MEDING}} + P_{\textit{MELNG}} + P_{\textit{AE}}}{P_{\textit{MELNG}} + P_{\textit{AE}}} \times \frac{V_{\textit{LNG}} \times \rho_{\textit{LNG}} \times \textit{LCV}_{\textit{LNG}} \times \textit{K}_{\textit{LNG}}}{V_{\textit{EFO}} \times \rho_{\textit{EFO}} \times \textit{LCV}_{\textit{EFO}} \times \textit{K}_{\textit{EFO}} + V_{\textit{MDO}} \times \rho_{\textit{MDO}} \times \textit{LCV}_{\textit{MDO}} \times \textit{K}_{\textit{MDO}} + V_{\textit{LNG}} \times \rho_{\textit{LNG}} \times \textit{LCV}_{\textit{LNG}} \times \textit{K}_{\textit{LNG}}}$ | _                     | 0.3462 |
|-----------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|
| <u>32</u> | <u>f</u> DFliquid                         | 1-f <sub>DFgas</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =                     | 0.6538 |
| 33        | <u>EEDI</u>                               | [PMELNG X [fdfgas X (CF Pilotfuel X SFCME Pilotfuel + CF LNG X SFCDFLNG) + fdfliquid X CFMDO X SFCDFMDO)]+ PMEMDO X CFMDO X SFCME MDO + PAE X [fdfgas X (CFAE Pilotfuel X SFCAE Pilotfuel + CF LNG X SFCAE LNG) + fdfliquid X CFMDO X SFCAE MDO]] / (Vref X Capacity)                                                                                                                                                                                                                                                                                                                        | gCO <sub>2</sub> /tnm | 3.54   |